Convolutional Neural Networks for Alzheimer’s Detection Using Landmark-Based Hippocampus Slices
Keywords:
Convolutional neural network, multiclass classification, axial view, coronal view, sagittal view”.Abstract
This study tackles the urgent requirement for enhanced diagnostic precision in Alzheimer's disease (ad) by using devising a modern MRI-based approach concentrating at the hippocampal region. Traditional gadget gaining knowledge of algorithms have confronted challenges with irrelevant data from whole MRI photographs, impeding specific Alzheimer's disease categorization. The study utilizes Convolutional Neural Networks (CNNs), mainly Pretrained ResNet50, ResNet50, and LeNet, to awareness on unique slices of the hippocampus to improve diagnostic accuracy. CNN models are trained on manually extracted hippocampus areas the usage of the Alzheimer's disease Neuroimaging Initiative (ADNI) dataset. by means of focusing on this essential area related to advert pathophysiology, the fashions are delicate to appropriately stumble on suggestive patterns. The have a look at additionally examines the effectiveness of LeNet with Dropout, illustrating its capacity to attain 100% accuracy. This studies highlights the importance of focused on unique brain areas in Alzheimer's disease diagnosis, providing a possible road for better detection techniques. The outcomes no longer simplest decorate comprehension of Alzheimer's disease pathology however also provide practical implications for enhancing medical diagnostic instruments, in the long run helping in more powerful control and intervention strategies for this devastating situation.
Downloads
References
Alzheimer’s Association, ‘‘2017 Alzheimer’s disease facts and figures,’’ Alzheimer’s Dementia, vol. 13, no. 4, pp. 325–373, Apr. 2017, doi: 10.1016/j.jalz.2017.02.001.
G. Livingston, J. Huntley, A. Sommerlad, D. Ames, C. Ballard, and S. Banerjee, ‘‘Dementia prevention, intervention, and care: 2020 report of the Lancet commission,’’ Lancet, vol. 396, no. 10248, pp. 413–446, 2020, doi: 10.1016/S0140-6736(20)30367-6.
G. B. Frisoni, N. C. Fox, C. R. Jack, P. Scheltens, and P. M. Thompson, ‘‘The clinical use of structural MRI in Alzheimer disease,’’ Nature Rev. Neurol., vol. 6, no. 2, pp. 67–77, Feb. 2010, doi: 10.1038/nrneurol.2009.215.
J. Olloquequi, M. Ettcheto, A. Cano, E. Sanchez-López, M. Carrasco, T. Espinosa, C. Beas-Zarate, G. Gudiño-Cabrera, M. E. Ureña-Guerrero, E. Verdaguer, J. Folch, C. Auladell, and A. Camins, ‘‘Impact of new drugs for therapeutic intervention in Alzheimer’s disease,’’ Frontiers BioscienceLandmark, vol. 27, no. 5, p. 146, 2022, doi: 10.31083/j.fbl2705146.
Y. L. Rao, B. Ganaraja, B. V. Murlimanju, T. Joy, A. Krishnamurthy, and A. Agrawal, ‘‘Hippocampus and its involvement in Alzheimer’s disease: A review,’’ 3 Biotech, vol. 12, no. 2, pp. 1–10, Feb. 2022, doi: 10.1007/s13205-022-03123-4.
M. Laakso, ‘‘MRI of hippocampus in incipient Alzheimer’s disease,’’ Ph.D. dissertation, Ser. Rep. Dept. Neurol., Univ. Kuopio, Kuopio, Finland, 1996.
A. Moscoso, J. Silva-Rodríguez, J. M. Aldrey, J. Cortés, A. Fernández-Ferreiro, N. Gómez-Lado, Á. Ruibal, and P. Aguiar, ‘‘Prediction of Alzheimer’s disease dementia with MRI beyond the shortterm: Implications for the design of predictive models,’’ NeuroImage, Clin., vol. 23, Jan. 2019, Art. no. 101837, doi: 10.1016/j.nicl.2019.101837.
K. M. Poloni and R. J. Ferrari, ‘‘Automated detection, selection and classification of hippocampal landmark points for the diagnosis of Alzheimer’s disease,’’ Comput. Methods Programs Biomed., vol. 214, Feb. 2022, Art. no. 106581, doi: 10.1016/j.cmpb.2021.106581.
A. Demirhan, ‘‘Classification of structural MRI for detecting Alzheimer’s disease,’’ Int. J. Intell. Syst. Appl. Eng., vol. 4, no. 1, pp. 195–198, Dec. 2016.
H. Qiao, L. Chen, Z. Ye, and F. Zhu, ‘‘Early Alzheimer’s disease diagnosis with the contrastive loss using paired structural MRIs,’’ Comput. Methods Programs Biomed., vol. 208, Sep. 2021, Art. no. 106282, doi: 10.1016/j.cmpb.2021.106282.
S. Savaş, ‘‘Detecting the stages of Alzheimer’s disease with pre-trained deep learning architectures,’’ Arabian J. Sci. Eng., vol. 47, no. 2, pp. 2201–2218, 2022.
Z. Zhang and E. Sejdić, ‘‘Radiological images and machine learning: Trends, perspectives, and prospects,’’ Comput. Biol. Med., vol. 108, pp. 354–370, May 2019, doi: 10.1016/j.compbiomed.2019.02.017.
Y. Kazemi and S. Houghten, ‘‘A deep learning pipeline to classify different stages of Alzheimer’s disease from fMRI data,’’ in Proc. IEEE Conf. Comput. Intell. Bioinf. Comput. Biol. (CIBCB), May 2018, pp. 1–8, doi: 10.1109/CIBCB.2018.8404980.
S. Gao and D. Lima, ‘‘A review of the application of deep learning in the detection of Alzheimer’s disease,’’ Int. J. Cognit. Comput. Eng., vol. 3, pp. 1–8, Jun. 2022, doi: 10.1016/j.ijcce.2021.12.002.
E. Thibeau-Sutre, B. Couvy-Duchesne, D. Dormont, O. Colliot, and N. Burgos, ‘‘MRI field strength predicts Alzheimer’s disease: A case example of bias in the ADNI data set,’’ in Proc. IEEE 19th Int. Symp. Biomed. Imag. (ISBI), Mar. 2022, pp. 1–4, doi: 10.1109/ISBI52829.2022. 9761504.
M. Raju, V. P. Gopi, and V. S. Anitha, ‘‘Multi-class classification of Alzheimer’s disease using 3DCNN features and multilayer perceptron,’’ in Proc. 6th Int. Conf. Wireless Commun., Signal Process. Netw. (WiSPNET), Mar. 2021, pp. 368–373, doi: 10.1109/WiSPNET51692.2021. 9419393.
V. Sathiyamoorthi, A. K. Ilavarasi, K. Murugeswari, S. T. Ahmed, B. A. Devi, and M. Kalipindi, ‘‘A deep convolutional neural network based computer aided diagnosis system for the prediction of Alzheimer’s disease in MRI images,’’ Measurement, vol. 171, Feb. 2021, Art. no. 108838, doi: 10.1016/j.measurement.2020.108838.
N. Yamanakkanavar, J. Y. Choi, and B. Lee, ‘‘MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: A survey,’’ Sensors, vol. 20, no. 11, p. 3243, Jun. 2020, doi: 10.3390/s20113243.
M. Karthiga, S. Sountharrajan, S. Nandhini, and B. S. Kumar, ‘‘Machine learning based diagnosis of Alzheimer’s disease,’’ in Proc. Int. Conf. Image Process. Capsule Netw. Cham, Switzerland: Springer, 2020, pp. 607–619, doi: 10.1007/978-3-030-51859-2_55.
A. Farooq, S. Anwar, M. Awais, and S. Rehman, ‘‘A deep CNN based multi-class classification of Alzheimer’s disease using MRI,’’ in Proc. IEEE Int. Conf. Imag. Syst. Techn. (IST), Oct. 2017, pp. 1–6, doi: 10.1109/IST.2017.8261460.
K. V. Kumari and S. S. Barpanda, ‘‘Investigating the volumetric biomarkers of Alzheimer disease: A state-of-the art review,’’ in Advances in Distributed Computing and Machine Learning. Singapore: Springer, 2022, pp. 581–591.
S. Tomassini, A. Sbrollini, G. Covella, P. Sernani, N. Falcionelli, H. Müller, M. Morettini, L. Burattini, and A. F. Dragoni, ‘‘Brain-oncloud for automatic diagnosis of Alzheimer’s disease from 3D structural magnetic resonance whole-brain scans,’’ Comput. Methods Programs Biomed., vol. 227, Dec. 2022, Art. no. 107191, doi: 10.1016/j.cmpb.2022. 107191.
M. López, J. Ramírez, J. M. Górriz, I. Álvarez, D. Salas-Gonzalez, F. Segovia, R. Chaves, P. Padilla, and M. Gómez-Río, ‘‘Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer’s disease,’’ Neurocomputing, vol. 74, no. 8, pp. 1260–1271, Mar. 2011, doi: 10.1016/j.neucom.2010.06.025.
W. Kang, L. Lin, B. Zhang, X. Shen, and S. Wu, ‘‘Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer’s disease diagnosis,’’ Comput. Biol. Med., vol. 136, Sep. 2021, Art. no. 104678, doi: 10.1016/j.compbiomed.2021. 104678.
M. S. Røvang, P. Selnes, B. J. MacIntosh, I. R. Groote, L. Paalhaugen, S. Carole, T. Fladby, and A. Bjørnerud, ‘‘Segmenting white matter hyperintensities on isotropic three-dimensional fluid attenuated inversion recovery magnetic resonance images: Assessing deep learning tools on Norwegian imaging database,’’ 2022, arXiv:2207.08467.
M. A. Ebrahimighahnavieh, S. Luo, and R. Chiong, ‘‘Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review,’’ Comput. Methods Programs Biomed., vol. 187, Apr. 2020, Art. no. 105242, doi: 10.1016/j.cmpb.2019. 105242.
M. T. Vlaardingerbroek and J. A. Boer, Magnetic Resonance Imaging: Theory and Practice. Berlin, Germany: Springer, 2013.
S. Katabathula, Q. Wang, and R. Xu, ‘‘Predict Alzheimer’s disease using hippocampus MRI data: A lightweight 3D deep convolutional network model with visual and global shape representations,’’ Alzheimer’s Res. Therapy, vol. 13, no. 1, pp. 1–9, Dec. 2021, doi: 10.1186/s13195-021- 00837-0.
K. G. Achilleos, S. Leandrou, N. Prentzas, P. A. Kyriacou, A. C. Kakas, and C. S. Pattichis, ‘‘Extracting explainable assessments of Alzheimer’s disease via machine learning on brain MRI imaging data,’’ in Proc. IEEE 20th Int. Conf. Bioinformatics Bioeng. (BIBE), Oct. 2020, pp. 1036–1041, doi: 10.1109/BIBE50027.2020.00175.
M. Sethi, S. Rani, A. Singh, and J. L. V. Mazón, ‘‘A CAD system for Alzheimer’s disease classification using neuroimaging MRI 2D slices,’’ Comput. Math. Methods Med., vol. 2022, pp. 1–11, Aug. 2022, doi: 10.1155/2022/8680737.
C. V. Angkoso, H. P. A. Tjahyaningtijas, Y. Adrianto, A. D. Sensusiati, I. K. E. Purnama, and M. H. Purnomo, ‘‘Multi-features fusion in multi-plane MRI images for Alzheimer’s disease classification,’’ Int. J. Intell. Eng. Syst., vol. 15, no. 4, pp. 182–197, 2022, doi: 10.22266/ijies2022.0831.17.
S. R. Chandaran, G. Muthusamy, L. R. Sevalaiappan, and N. Senthilkumaran, ‘‘Deep learning-based transfer learning model in diagnosis of diseases with brain magnetic resonance imaging,’’ Acta Polytechnica Hungarica, vol. 19, no. 5, pp. 127–147, 2022.
B. Y. Lim, K. W. Lai, K. Haiskin, K. A. S. H. Kulathilake, Z. C. Ong, Y. C. Hum, S. Dhanalakshmi, X. Wu, and X. Zuo, ‘‘Deep learning model for prediction of progressive mild cognitive impairment to Alzheimer’s disease using structural MRI,’’ Frontiers Aging Neurosci., vol. 14, Jun. 2022, Art. no. 876202, doi: 10.3389/fnagi.2022.876202.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.