Phased Array Antennas for MMwave Applications

Authors

  • Matta Venkata Durga Pavan Kumar, Mamatha B, Akkisetti Vn Hanuman, Rayudu Vinay Kumar

Keywords:

Linear Array; Phase Shifters; Phased Array; Radiation Pattern; Microstrip Antenna; Beam Direction.

Abstract

The beam-steering antenna is crucial and extensively used in communication systems. This communication presents the design of a 28 GHz beam-steering phased array antenna for 5G millimeter-wave applications. The aim of this project is to examine and deploy a phase shifter in a linear antenna array for angular scanning. The proposed array antenna has four microstrip patch antenna components, with each feed port coupled to a phase shifter. The primary mechanism of radiation arises from the activation of elements in succession with varying phase delays. The emitted beam may be directed in various orientations based on the initial excitation of the components. In the first instance, three-dimensional radiation is emitted at a 0° phase. The second configuration achieves commendable scanning performance throughout a range of ±10° to ±40°, with an acceptable side lobe level and a gain of 12.1 dB.

Downloads

Download data is not yet available.

References

D. Ehyaie: Novel Approaches to the Design of Phased Array Antennas. pp. 1-11 2011.

T. Eray, H. Jurgen,W. Christoph, Z. Thomas: A novel millimeter-wave dual-fed phased array for beam steering. IEEE transaction on microwave theory and technique. Vol. 61, pp. 40-43. 2013.

M. Dorra: Etude comportementale et conception d'un réseau d'oscillateurs couplés intégré en technologie silicium appliqué à la commande d'un réseau d'antennes linéaire.2013.

L. Jinxin, Z. Qingsheng, L. Ruizhi, A. Tayeb: Beam-tilting antenna with negative refractive indexe metamateriam loading. IEEE antennas and wirless propagation letters. Vol. 61, pp. 40-43. 2017.

Y. Yazid, G. Xun: A low-cost patch antenna phased array with analog beam steering using mutual coupling and reactive loading. IEEE antenna and wirless propagation letters. Vol. 7. 2012.

M. Khalily, R. Tafazolli, T. A. Rahman, and M. R. Kamarudin: Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28 GHz mm-wave applications. IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1305–1308, 2016.

T. Eray, H. Jurgen, W. Christoph, Z. Thomas: Reconfigurable Beam Steering Using a Microstrip Patch Antenna With a U-Slot for Wearable Fabric Applications. IEEE antennas and wirless propagation letters. Vol. 15,2013.

L. Teng, Z. N. Chen: Control of Beam Direction for Substrate-Integrated Waveguide Slot Array Antenna Using Metasurface. IEEE Transaction On Antennas And Propagation. 2018.

R. Badreddine, L. Andre, P. Gerard, N. Shah: Modeling and design of metasurfaces for beam scanning. Appl. Phys. Lett. 50, 123,2017.

Gu, X.; Liu, D.; Baks, C.; Tageman, O.; Sadhu, B.; Hallin, J.; Rexberg, L.; Parida, P.; Kwark, Y.; Valdes-Garcia, A. Development,

Implementation, and Characterization of a 64-Element Dual-Polarized Phased-Array Antenna Module for 28-GHz High-Speed

Data Communications. IEEE Trans. Microw. Theory Tech. 2019, 67, 2975–2984.

17. Wang, Y.; Chung, H.; Ma, Q.; Rebeiz, G.M. A 57.5–65.5 GHz Phased-Array Transmit Beamformer in 45 nm CMOS SOIWith 5

dBm and 6.1 Linear PAE for 400 MBaud 64-QAM Waveforms. IEEE Trans. Microw. Theory Tech. 2021, 69, 1772–1779.

18. Herd, J.S.; Conway, M.D. The Evolution to Modern Phased Array Architectures. Proc. IEEE 2016, 104, 519–529.

19. Zhang, Y.P.; Liu, D. Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter-Wave Devices for

Wireless Communications. IEEE Trans. Antennas Propag. 2009, 57, 2830–2841.

20. Zhang, Y.; Mao, J. An Overview of the Development of Antenna-in-Package Technology for Highly Integrated Wireless Devices.

Proc. IEEE 2019, 107, 2265–2280.

21. Zwenger, C.; Chaudhry, V. Antenna in package (AiP) technology for 5G growth. Chip Scale Rev. March/April 2020, 351. Available

online: https://www.chipscalereview.com/wp-content/uploads/2021/01/ChipScale_Mar-Apr_2020-wp.pdf (accessed on 28

November 2022).

22. Gao, H.;Wang,W.; Fan,W.; Zhang, F.;Wang, Z.;Wu, Y.; Liu, Y.; Pedersen, G.F. Design and Experimental Validation of Automated

Millimeter-Wave phased Array Antenna-in-Package (AiP) Experimental Platform. IEEE Trans. Instrum. Meas. 2021, 70, 1–11.

23. Zhang, F.; Fan,W.;Wang, Z.; Zhang, Y.; Pedersen, G.F. Improved Over-the-Air Phased Array Calibration Based on Measured

Complex Array Signals. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1174–1178.

24. Seiji, M.; Katagi, T. A method for measuring amplitude and phase of each radiating element of a phased array antenna. Electron.

Commun. Jpn. Part Commun. 1982, J65-B, 555–560.

25. Takahashi, T.; Konishi, Y.; Chiba, I. A Novel Amplitude-Only Measurement Method to Determine Element Fields in Phased

Arrays. IEEE Trans. Antennas Propag. 2012, 60, 3222–3230.

26. Long, R.; Ouyang, J.; Yang, F.; Han, W.; Zhou, L. Fast Amplitude-Only Measurement Method for Phased Array Calibration. IEEE

Trans. Antennas Propag. 2017, 65, 1815–1822.

27. Hejselbæk, J.; Nielsen, J.; Fan, W.; Pedersen, G.F. Measured 21.5 GHz Indoor Channels With User-Held Handset Antenna Array.

IEEE Trans. Antennas Propag. 2017, 65, 6574–6583.

28. Mbugua, A.W.; Fan, W.; Olesen, K.; Cai, X.; Pedersen, G.F. Phase-Compensated Optical Fiber-Based Ultrawideband Channel

Sounder. IEEE Trans. Microw. Theory Tech. 2020, 68, 636–647.

29. Zwick, T.; Beukema, T.; Nam, H. Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel.IEEE Trans. Veh. Technol. 2005, 54, 1266–1277.

Downloads

Published

30.10.2024

How to Cite

Matta Venkata Durga Pavan Kumar. (2024). Phased Array Antennas for MMwave Applications. International Journal of Intelligent Systems and Applications in Engineering, 12(4), 5607 –. Retrieved from https://www.ijisae.org/index.php/IJISAE/article/view/7484

Issue

Section

Research Article