Application of Edge Detour Monophonic Number of a Fuzzy Graph

Authors

  • S. Sherly Jasmin, S. Chandra Kumar

Keywords:

fuzzy graph, fuzzy strong chord, fuzzy monophonic path, fuzzy detour monophonic path, edge detour monophonic number.

Abstract

In networks with uncertain or unreliable links, fuzzy graphs model link reliability. The edge detour monophonic number helps identify crucial nodes for secure detour routing when shortest paths are not viable. Let be a set of vertices in a connected non-trivial fuzzy graph . Then the edge detour monophonic closure of , denoted by , is the set of all edges lying on the fuzzy detour monophonic path between a pair of vertices of . A set M of vertices in a connected non-trivial fuzzy graph  is defined to be an edge detour monophonic set of  if , the edge set of . An edge detour monophonic set of minimum cardinality is called an edge detour monophonic basis of  and the cardinality of an edge detour monophonic basis in  is the edge detour monophonic number of , denoted by . The minimum number of vertices in a set such that every edge in the fuzzy graph lies in a monophonic detour path between two vertices in the set. In this study, the applications of edge detour monophonic number of fuzzy graph in the system of transporting goods are applied in order to optimize the number of commercial vehicle inspectors required to patrol and inspect the vehicle routes currently used in an urban road network.

Downloads

Download data is not yet available.

References

Al-Hawary, T. (2011). Complete fuzzy graphs. International Journal of Mathematical Combinatorics, 4, 26-34.

https://www.researchgate.net/publication/314375949

Balaraman, G., Sundareswaran, R., Shanmugapriya, M., & Said Broumi. (2023). Geodetic domination integrity in fuzzy graphs. Journal of Intelligent & Fuzzy Systems, 45(2), 2209-2222. https://doi.org/10.3233/JIFS-223249

Bhutani, K. R., & Rosenfeld, A. (2003). Strong arcs in fuzzy graphs. Information Sciences, 152, 319-322.

https://doi.org/10.1016/S0020-0255(02)00411-5

John, J & Arul Paul Sudhahar, P. (2012). On the edge monophonic number of a graph, Filomat, 26(6), 1081-1089.

http://dx.doi.org/10.2298/FIL1206081J

Mathew, S., & Sunitha, M. S. (2009).Types of arcs in a fuzzy graph. Information Sciences, 179, 1760-1768.

https://doi.org/10.1016/j.ins.2009.01.003

Moderson, J. N., & Yao, Y.Y. (2002). Fuzzy cycles and fuzzy trees. The Journal of Fuzzy Mathematics, 10 , 189-202.

https://www.researchgate.net/publication/265458358

Narayan, K. R. S., & Sunitha, M. S. (2012). Connectivity in a fuzzy graphs and its complement. General Mathematics Notes, 9, 38-43.

http://www.geman.in

Pal, M., Samanta, S., & Ghorai, G. (2020). Modern Trends in Fuzzy Graph Theory. Springer Nature, Singapore Pte Ltd. http://dx.doi.org/10.1007/978-981-15-8803-7

Rosenfeld, A. (1975). Fuzzy graphs, Fuzzy sets and their Applications to Cognitive and Decision Processes. Proceedings of the US- Japan Seminar on Fuzzy sets and their Applications (pp. 77-95). Academic Press, New York. https://doi.org/10.1016/B978-0-12-775260-0.50008-6

Samanta, S., & Sarkar, B. (2018). A study on generalized fuzzy graphs. Journal of Intelligent & Fuzzy Systems, 35(3), 3405-3412.

http://dx.doi.org/10.3233/JIFS-17285

Sameeha Rehmani. (2025). Perfect S-geodetic fuzzy graphs. International Journal of Advanced Research, 13(1), 695-698.

http://dx.doi.org/10.21474/IJAR01/20245

Sameeha Rehmani., & Sunitha, M.S. (2019). Edge geodesic number of a fuzzy graph. Journal of Intelligent & fuzzy systems, 37(3), 4273-4286.

http://dx.doi.org/10.3233/JIFS-190383

Santhakumaran, A. P., & John, J. (2013). Edge geodetic number of graph. Journal of Discrete Mathematics Sciences and Cryptography, 415-432.

https://doi.org/10.1080/09720529.2007.10698129

Santhakumaran, A. P., Titus.P., & Ganesamoorthy, K. (2014). On the monophonic number of a graph. Journal of Applied Mathematics and Informatics, 32(1-2), 255-266. http://dx.doi.org/10.14317/jami.2014.255

Santhakumaran, A. P.,Titus, P., Ganesamoorthy, K., & Balakrishnan,P. (2013). Edge detour monophonic number of a graph. Proyecciones Journal of Mathematics ,32(2), 183-198.

http://dx.doi.org/10.4067/S0716-09172013000200007

Titus, P., Ganesamoorthy, K., & Balakrishnan, P. (2013). The Detour Monophonic Number of a Graph. J. Combin, Math. Combin, Comput., 84, 179-188. https://combinatorialpress.com/jcmcc-articles/volume-084/the-detour-monophonic-number-of-a-graph

Zadeh, L.A. (1965). Fuzzy sets, Information and Control, 8 , 338-353.

https://doi.org/10.1016/S0019-9958(65)90241-X

Downloads

Published

25.12.2024

How to Cite

S. Sherly Jasmin. (2024). Application of Edge Detour Monophonic Number of a Fuzzy Graph. International Journal of Intelligent Systems and Applications in Engineering, 12(23s), 3358 –. Retrieved from https://www.ijisae.org/index.php/IJISAE/article/view/7703

Issue

Section

Research Article