Task-Specific Image Enhancement for Underwater Turtle Detection and Segmentation: An Investigation on a Benchmark Dataset

Authors

  • Abhisheka Thumbesara Eshwara, Basavaraj Ningappa Jagadale, Madhuri Gurram Ramesh, Swaroopa Hebbar Narayan

Keywords:

Image segmentation, Intelligent vision systems, Marine turtle dataset, Object detection, Segment anything model, Underwater image enhancement, YOLO

Abstract

Underwater images often present challenges related to color distortion, low contrast, and loss of texture, severely degrading the performance of computer vision models involved in ecological monitoring or autonomous systems. This work investigates the performance of various enhancement techniques based on two main downstream tasks: turtle detection using the YOLO model and turtle segmentation using SAM. A multi-species dataset of turtles was collected from public resources, and five representative enhancement schemes, including classic contrast enhancement, generative learning-based enhancement, physics-guided correction, fusion-based processing, and the proposed TOUE method, were tested. Experimental results illustrate that the effectiveness of enhancement is very task dependent. That is, TOUE had the best detection accuracy and generalization capability on both the custom dataset and the SUIM benchmark, whereas CLAHE generated the best segmentation accuracy owing to consistent local contrast refinement. No single enhancement method effectively produced the optimal outcome in these two tasks. Guided by this observation, a dual-stage pipeline has been proposed, utilizing TOUE for detection and CLAHE for segmentation, a more reliable end-to-end pipeline for underwater vision. These findings underline the necessity of choosing enhancement methods based on the downstream application and provide, for the first time, a practical framework for optimizing detection-segmentation systems in real underwater scenarios.

Downloads

Download data is not yet available.

References

Schettini, R., & Corchs, S. (2010). Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP Journal on Advances in Signal Processing, 2010(1). https://doi.org/10.1155/2010/746052

Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization. In Elsevier eBooks (pp. 474–485). https://doi.org/10.1016/b978-0-12-336156-1.50061-6

Ancuti, C. O., Ancuti, C., De Vleeschouwer, C., & Bekaert, P. (2017). Color balance and fusion for underwater image enhancement. IEEE Transactions on Image Processing, 27(1), 379–393. https://doi.org/10.1109/tip.2017.2759252

Islam, J., Xia, Y., & Sattar, J. (2020). Fast underwater image enhancement for improved visual perception. IEEE Robotics and Automation Letters, 5(2), 3227–3234. https://doi.org/10.1109/lra.2020.2974710

Wang, Z., Shen, L., Xu, M., Yu, M., Wang, K., & Lin, Y. (2023). Domain adaptation for underwater image enhancement. IEEE Transactions on Image Processing, 32, 1442–1457. https://doi.org/10.1109/tip.2023.3244647

Jamieson, S., How, J. P., & Girdhar, Y. (2023). DeepSeeColor: Realtime adaptive color correction for autonomous underwater vehicles via deep learning methods. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2303.04025

Li, M., Pang, H., Jiang, C., Li, M., Pang, H., & Jiang, C. (2025). SGL-YOLO: Lightweight underwater object detection algorithm based on feature fusion. Signal Image and Video Processing, 19(16). https://doi.org/10.1007/s11760-025-04962-3

Huang, J., Fang, C., Zheng, X., & Liu, J. (2024). YOLOV8-UC: an improved YOLOV8-Based Underwater Object Detection Algorithm. IEEE Access, 12, 172186–172195. https://doi.org/10.1109/access.2024.3496925

Baek, J., Kim, J., & Kim, C. (2024). Deep learning-based image classification of sea turtles using object detection and instance segmentation models. PLoS ONE, 19(11), e0313323. https://doi.org/10.1371/journal.pone.0313323

Islam, J., Edge, C., Xiao, Y., Luo, P., Mehtaz, M., Morse, C., Enan, S. S., & Sattar, J. (2020). Semantic Segmentation of Underwater Imagery: Dataset and Benchmark. Computer Vision and Pattern Recognition, 1769–1776. https://doi.org/10.1109/iros45743.2020.9340821

Zuo, X., Jiang, J., Shen, J., & Yang, W. (2025). Improving underwater semantic segmentation with underwater image quality attention and muti-scale aggregation attention. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2503.23422

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W., Dollár, P., & Girshick, R. (2023). Segment anything. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2304.02643

Huang, Y., Lai, W., Ji, J., Cao, L., Zhang, S., & Ji, R. (2024). HRSAM: Efficient Interactive Segmentation in High-Resolution Images. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2407.02109

Ma, J., He, Y., Li, F., Han, L., You, C., & Wang, B. (2024). Segment anything in medical images. Nature Communications, 15(1), 654. https://doi.org/10.1038/s41467-024-44824-z

Land, E. H., & McCann, J. J. (1971). Lightness and retinex theory. Journal of the Optical Society of America, 61(1), 1. https://doi.org/10.1364/josa.61.000001

Zhang, D., He, Z., Zhang, X., Wang, Z., Ge, W., Shi, T., & Lin, Y. (2023). Underwater image enhancement via multi-scale fusion and adaptive color-gamma correction in low-light conditions. Engineering Applications of Artificial Intelligence, 126, 106972. https://doi.org/10.1016/j.engappai.2023.106972

Mishra, P., Vipparthi, S. K., & Murala, S. (2025). U-ENHANCE: Underwater image enhancement using WaVELet Triple Self-attention. In Lecture notes in computer science (pp. 87–104). https://doi.org/10.1007/978-981-96-2641-0_6

Wang, Y., Guo, J., He, W., Gao, H., Yue, H., Zhang, Z., & Li, C. (2023). Is underwater image enhancement all object detectors need? arXiv (Cornell University). https://doi.org/10.48550/arxiv.2311.18814

Lucas, E., Awad, A., Geglio, A., Saleem, A., Moradi, S., Havens, T. C., Galloway, A., & Paheding, S. (2025, February 28). Underwater Image Enhancement and Object Detection: Are Poor Object Detection Results On Enhanced Images Due to Missing Human Labels? In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW). https://doi.org/10.1109/wacvw65960.2025.00167

Yang, M., Hu, J., Li, C., Rohde, G., Du, Y., & Hu, K. (2019). An In-Depth Survey of Underwater image Enhancement and Restoration. IEEE Access, 7, 123638–123657. https://doi.org/10.1109/access.2019.2932611

Nabahirwa, E., Song, W., Zhang, M., Fang, Y., & Ni, Z. (2025). A structured review of underwater object detection challenges and solutions: from traditional to large vision language models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2509.08490

Awad, A., Saleem, A., Paheding, S., Lucas, E., Al-Ratrout, S., & Havens, T. C. (2024). Beneath the surface: The role of underwater image enhancement in object detection. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2411.14626

Putro, M. D., Mose, Y., Andaria, A. C., Litouw, J., Poekoel, V. C., & Najoan, X. (2024). Streamlining deep learning network for real-time sea turtle detection. Jurnal Rekayasa Elektrika, 20(3). https://doi.org/10.17529/jre.v20i3.35236

Xiao, Z., Li, Z., Li, H., Li, M., Liu, X., & Kong, Y. (2024). Multi-Scale Feature Fusion Enhancement for Underwater Object Detection. Sensors, 24(22), 7201. https://doi.org/10.3390/s24227201

Wang, J., He, X., Shao, F., Lu, G., Hu, R., & Jiang, Q. (2022). Semantic segmentation method of underwater images based on encoder-decoder architecture. PLoS ONE, 17(8), e0272666. https://doi.org/10.1371/journal.pone.0272666

Chen, T., Zhu, L., Ding, C., Cao, R., Wang, Y., Zhang, S., Li, Z., Sun, L., Zang, Y., & Mao, P. (2023). SAM-Adapter: Adapting Segment Anything in under-performed scenes. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW 2023) (pp. ––). IEEE. https://openaccess.thecvf.com/content/ICCV2023W/VCL/papers/Chen_SAM-Adapter_Adapting_Segment_Anything_in_Underperformed_Scenes_ICCVW_2023_paper.pdf

Hong, Y., Zhou, X., Hua, R., Lv, Q., & Dong, J. (2024). WaterSAM: Adapting SAM for Underwater Object Segmentation. Journal of Marine Science and Engineering, 12(9), 1616. https://doi.org/10.3390/jmse12091616

Abhisheka, T. E., Jagadale, B. N., Madhuri, G. R., & Chandrakantha, T. S. (2024). Enhancing Underwater Image Segmentation Through Deep Learning-Based Image Enhancement Techniques: A Study on EUVP and SUIM Datasets. Journal of Information Systems Engineering and Management, 9(4), 31027. https://doi.org/10.52783/jisem.v9i4.78

Downloads

Published

20.11.2025

How to Cite

Abhisheka Thumbesara Eshwara. (2025). Task-Specific Image Enhancement for Underwater Turtle Detection and Segmentation: An Investigation on a Benchmark Dataset. International Journal of Intelligent Systems and Applications in Engineering, 13(2s), 79–86. Retrieved from https://www.ijisae.org/index.php/IJISAE/article/view/7943

Issue

Section

Research Article